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The refined boundary condition at the inlet of a system has been 
formulated with consideration given to the effect of the boundedness 
of the volume of the pressurized container; an engineering solution 
of the problem is presented with respect to a typical experimental 
set-up [1-3]. 

In the theore t i ea I  ana lys is  of a typical  expe r imen ta l  
se t -up for inves t iga t ion  of the p r o c e s s  of convect ive  
diffusion of sal ts  [1-3] it is gene ra l ly  assumed that 
the concentra t ion  value at the inlet to the sys tem is 
constant;  in pa r t i cu la r ,  in studying the d is t i l la t ion  
p r o c e s s  it is a s sumed  that c(0, t) = 0. 

Genera l ly  speaking ,  this condit ion is poss ib le  only 
in the l imi t ing  case  in which a solvent  is fed to the 
s y s t e m ' s  inlet  f rom an infini tely l a rge  and thoroughly 
mixed  p r e s s u r i z e d  container .  * The d is t i l la t ion  of a 
finite medium under  these  c i r c u m s t a n c e s  comes  about 
for two reasons :  the d i scharg ing  solution produces  
m a c r o t r a n s p o r t  at the outlet  face;  m i c r o t r a n s p o r t  occurs  

at the inlet face (toward the f i l t ra t ion  flow) because  of 
the diffusion of the sal ts .  

An o b s e r v e r  standing at the outlet  face of the s y s -  
t em will c l e a r l y  be able to es tab l i sh  the d i f fe rence  

between the init ial  quantity of sa l t s  d i sso lved  in the 
medium and the amount r emoved  (within an infinite 
per iod  of t ime).  The magnitude of this d i f fe rence  has 
been evaluated in [3] and can be used to de t e rmine  the 
ef fec t ive  Pe(elet)  numbers .  

Unlike the rea l  l imi t  condition, constancy of con- 
cent ra t ion  at the s y s t e m ' s  inlet  need not be maintained.  
Indeed, s ince the volume of the l iquid within the p r e s -  
su r i zed  conta iner  is f inite (and constant,  because  of 
continuous rep lacement ) ,  the diffusion flow f rom the 
medium into the p r e s s u r i z e d  conta iner  changes the 
ini t ial  ze ro  value of the coneen t ra t ion to  the final value.  
During the cou r se  of the exper iment ,  the value of the 
concent ra t ion  within the p r e s s u r i z e d  conta iner  will  
r i s e  f r o m  z e r o  to some max imum value,  subsequent ly  
tending toward zero ,  in propor t ion  to the speed with 
which the l iquid in the p r e s s u r i z e d  conta iner  is  con-  
t inuously r ep laced  with pure solvents .  

Under these  c i r c u m s t a n c e s  the d i sso lved  sa l ts  dif-  
fusing into the p r e s s u r i z e d  conta iner  will  obviously 
no longer  be i r r e v e r s i b l y  los t  to an o b s e r v e r  standing 
at the outlet  face.  In the final  ana lys is ,  such an ob- 
s e r v e r  will  be able to es tab l i sh  the total  quantity of 

*Other means  of sa t i s fy ing this condition a re  pos-  
s ib le ,  In pa r t i cu la r ,  when the inlet  of the s y s t e m  is 
s t r eaml ined  by a liquid of adequate height (to produce 
the p r e s s u r e  that is needed), etc.  

sa l t s  r emoved  f rom the medium being studied; it is 

obvious in this case  that the t ime for the v i r tua l ly  
comple te  d is t i l la t ion  is somewhat  g r e a t e r  than in the 
l imi t  case  in which an infinitely l a rge  p r e s s u r i z e d  

conta iner  is used. 
Let  us fo rmula te  the problem.  We have a porous 

rod f i l led with a solut ion of a uni form concentrat ion.  
A p r e s s u r i z e d  conta iner  f i l led  with a pure solvent  
provides  a flow of a liquid to the inlet of the sys tem 
(the rod). It is a ssumed that  mixing takes p lace  within 
the p r e s s u r i z e d  container ;  in par t icu la r ,  this can be 
accompl i shed  through the continuous inflow of additional 
solvent.  The outlet face of the rod is in contact  with 
the a i r ;  consequently,  the re  is no diffusion flow there .  
The quantity of sal t  Q(t) r emoved  f rom the medium is 
what we have to measu re .  Knowing Q(t), we have to 
desc r ibe  the expuls ion p rocess .  

The d is t r ibut ion  of the sal ts  in the rod is desc r ibed  
by the solut ion of the convec t ive-d i f fus ion  equation 

Oc Oc 1 ODe 
- -  + - -  ( 1 )  
On Oy Pe @2 

under the following conditions: 

c (g, 0) = 1, 

c (o, n) - a (n), 

(2) 

(3) 

a(O) = o, ( 4 )  

da [ 10c(O,n)] 
- -  d---n = ~ a (n) Pe  Og ' ( 5 )  

Oc(1, n) = O. (6) 
oy  

Conditions (2)-(4) and (6) a re  obvious. Condition 
(5) e x p r e s s e s  the c i r c u m s t a n c e  that the change in the 
amount of sa l t s  within the p r e s s u r i z e d  conta iner  is 
governed by the d i f fe rence  between the amount of sal t  
r emoved  f rom the conta iner  by the l iquid enter ing  the 
rod and the amount diffusing f rom the rod into the 
container .  Since the posi t ive  d i rec t ion  of the o v e r - a l l  
flow co r r e sponds  to the loss  a(n) ,  we have chosen the 
"minus"  sign in (5). 

We note that as fl ~ 0 (this cor responds  to the case  
of an infini tely l a rge  p r e s s u r i z e d  container) ,  con-  
s ide r ing  (4), f rom condition (5) we have c(0, n) = 0, 
i . e . ,  a va r ian t  cons idered  in [1-3].  As fi ~ .o (this 
co r r e sponds  to the case  of an infini tely smal l  p r e s -  
sur ized  container) ,  we find that c(0, n) - (1/Pc) • 
x 0c(0, n) /0y = 0, i . e . ,  a var ian t  cons idered  in [4]. 
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F o r  the va lue  of Q(n) of i n t e r e s t  to us ,  we have 

n 

O(n) =mlS i' c(1, ~) d~. (7) 
g 

R is no t  d i f f icul t  to see  that  the s y s t e m  of equa t ions  
(1) - (6)  p rov ides  for  the comple t e  r e m o v a l  f r o m  the 
face  y = 1 of the sa l t s  i n i t i a l l y  con ta ined  within  the 
rod.  Indeed,  hav ing  i n t eg ra t ed  Eq. ( 1 ) w i t h  r e s p e c t  
to y in  l i m i t s  f r o m  z e r o  to uni ty ,  we obta in  

1 

7 2  c ( y , n ) @ + c ( i , n ) - c ( O , n )  = 

0 

= 1 0 c ( 1 , m )  .1 &(O,n) (8) 
Pe dy Pe Og 

With c o n s i d e r a t i o n  of cond i t ions  (2) - (6) ,  l e t  us  r e -  
w r i t e  Eq. (8) in the f o r m  

I 

- -  d--n q- c(g, n)dg . (9) 
0 

B ea r ing  in  m i n d  Eq. (7), we find that  

1 

Q (n) = - -  mlS + c (y, n) dy , 
n ~ o  

0 

(lO) 

f r o m  which 

O (~)  = mlS, (Ii) 

which is what we had to prove. 
Let us turn to the solution of system (1)-(6). Apply- 

ing the Laplace-Carson transform (with respect to 
the variable n) to Eqs. (1)-(6), we find the solution 
for the transformed equation (i) in the form 

c-(~, p) = 

(12) 

Us ing  the t r a n s f o r m e d  condi t ions  (2) - (6) ,  we obta in  

B = (p 4- [3) [T(P) (Pq-  ~)(~,--d) -1 q- 

+ ~(K + d)[1 - -exp(--~ ' ) ] /2Pe]  -~ , (13) 

A = B s + d exp (--)~), (14)  
A. .... d 

where 

(p(p) -~(s163  +d)exp(- -k ) ,  (15) 

d - ~ - - P e ;  x , -~V P e 2 + 4 P e p  " (16) 

F o r  the va lue  of ~(1, p) of i n t e r e s t  to us ,  we f ind 
that  

c(1, p) = 

[ 
(p q- ~5) exp L-- --~- J 

= 1 - - 2 K  ~(p)(p+~)+2p[$[1- -exp( - -~ , ) ]  (17) 

Applying  the t h e o r e m  of o p e r a t o r  expans ion  [51, we 
e a s i l y  f ind the e x p r e s s i o n  for  the p r e i m a g e  of c(1, n): 

c(1, n) = - -  16Peexp(Pe/2) x 

4 Pe n (4 ar + Pe~) -~ x 

x [ Pe (2 + Pc) + 2 Pe Yr (~) -ff 4 aer Pe 4-& ([3) ] -1 x 
Pe+2gr (~)J 

x (cos a~ )-', (18) 

where  

21~ 2 
xr (I]) (pr+[~)2, 

Pr} 4cL2r 4-Pc (19) 
g'  ([~) = P~7~-~  ~ 'pr  = - -  4Pc ' 

whi le  the va lues  of a r a r e  d e t e r m i n e d  f r o m  the e q u a -  
t ion 

Pe (4a~ 4- Pe2)f} (20) 
ctg% -- 2ar  (4a~ + Pe~-- 4 Pe[~) Ctr 

When fi = 0, we can  ea s i l y  d e r i v e  the e x p r e s s i o n  
f a m i l i a r  f r o m  [2, 3] f r o m  f o r m u l a  (18). 

Equat ion  (18) is exact .  Looking for  conven i en t  e a l -  
cu la t iona l  f o r m u l a s ,  l e t  us  t u r n  to c e r t a i n  s i m p l i f i c a -  
t ions  and,  n a m e l y ,  l e t  us  r e s t r i c t  o u r s d v e s  to a c o n -  
s i d e r a t i o n  of the ease  Pe >- 2, which is of g r e a t e s t  
p r a c t i c a l  i n t e r e s t .  

Under  t he se  c i r c u m s t a n c e s  the e x p r e s s i o n  for  ~0(p) 
can  be r e p l a c e d  by  the a p p r o x i m a t e  r e l a t i o n s h i p  qo(p) 

X - d and,  r e t a i n i n g  the adapted d e g r e e  of a c c u r a c y ,  
we can rewrite gq. (17) as follows: 

c ( 1 , p ) = l - - 2 ) ~ ( p § 1 6 3  ~ . (21) 

Subsequen t ly  we find that  the r e l a t i o n s h i p  

(p q- ~)(~,--d) >> 2 p~ (22) 

is va l id  s ince  fl << 1 (for  the cond i t ions  of the e x p e r i -  
m e n t  d e s c r i b e d  in  [1-3] ) .  

With c o n s i d e r a t i o n  of the fo rego ing ,  we can r e p l a c e  
(21) with the fol lowing,  r e t a i n i n g  e x t r e m e l y  high a c -  
cu racy :  

~-(1, p)-- P (i, p) + AE(I, ;), (23) 

whe re  

[ �84 exp - -  

c~O,p) =1--2~ ~ - - d  ' (24) 

2 [~ exp (Pe/2) p F (p), (25) 
ac(1,p)  = V ~ -  P + f i  

F(p)= V p + s  e x p [ - V  ~ (p+e ) l  
W p  + ~ + V-g)  ~ 
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(8 ~ Pc/4, a = Pe). (26) 

We wri te  the express ion  for  Q(p) in s imi la r  fashion: 

Q(p) = ff+(p) -1- A Q(p), (27) 

where 

Q-*(p)=mlS[+(l,p)lp; (28) 

A Q (p) = mlS 5 c (1, p)/p. (29) 

Thevalues  of ~+ (1, p) and (~+(p) cor respond  to fl = 0. 
The corresponding pre images  were determined ear l ie r  
in [3] and have the fo rm 

c+(l,n) = 

I ( 3 " ~  = 1 --2 exp (2V--~  eric ~ -~- + ~ + 

V~ exp /-- a (--1 a ~ ) e x p i - - ~ T - - s n  ) + 

' } + ~ -  exp (--.2 ]fl-dT) eric ~1 , (30) 

2 Pe 2 ~ eric ~l-- 

-- exp (2 ]/ '-~-) eric ~ X 

[Pen  * 3Pc n +  P@/2 + 2 P c - - 1 ]  + 
x [ 4  + 2 2 Pe J 

+ [ n l /  Pen 
2 + 

1 +Pe/2 - -  + ~ V n ] expvT (- f) } 

i -d- 
( ~ _  1 ,-a- T C T _ V ~ ) . ( a l )  T } /  ~ +  V ;7 ,  ,1=- 

Let  us re tu rn  to the determinat ion of the cor rec t ion  
fac tors  which descr ibe  the effect  of the boundedness 
of the p re s su r i zed  container.  Let  us introduce into 
our considerat ion the tabulated t r ans fo rm [5]: 

~(p)= p l /p / - eexp[ -V  a(p-t-e) l (32)  
(p + [~) (b + V p + 8) 

Having differentiated the pre image  corresponding  to 
the t r ans fo rm in the fo rm of (32), on the basis  of b -  
and subsequently assuming  that b = Ce--we find the 
pre image  which cor responds  to a t r ans fo rm in the 
fo rm of (25). Thus we obtain 

U)Ta c (I, n) 
2 [3 exp (Pc/2) 

V;-- 13 exp(--~n) exp [-- V~-(8 -- $)] 
= --2 (VT+ g~----~) ~ • 

"\ T T -- 1/ + 
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~ ) + 2e V--n- exp ( - -  Tnn 
' 13 V 7  - ~ n  - -  

-- exp (~-d~e) [2 V T  + 

1 
-r- 8 ~ "  -t- 2 e n v c ~-] erie ~-- -~- X 

x { ' / 2  ~ (VT+ 

§ I / e - -  [3 )s exp (-- 13 n) exp [V ~ (s - -  [~)1 X 

[2,/Z ] Xeric[  2 V n + V ~  -- 

--28 V "7  exp (I / ~ )  eric ~} . ( 33) 

Equation (33) can be substantial ly simplified, since 
fl << e (=Pc/4). Expanding the quantities within the 
b races  with respect  to t3 (retaining t e rms  to/3 a in- 
clusively), and omitting the tedious calculations,  we 
obtain 

V-P-&c(l,n) 
2 ~ exp (Pc/2) 

exp (-- V-~-e ) 
= 8 ~ -  - exp (-- [~ n) eric ~1 + 

a --sn)[sn+ 3+~ r-gJ] -t- ] / :-n exp ( 4n 
I// 

-- [8 V T n  ~ + 

3 V -g  
+ n  (2 V-ae- + 8 V a )  + 4 

a I / T  1 ] 

+ 4 + 81/-7J • 

- - +  

• exp (-- V ~ )  eric ~. (34) 

For  large  Pe numbers  we can use the s imple r  exp res -  
sion 

h/(1, n) ~ exp (-- {~ n) erie ~1. (35) 
2 Pe 

Let us now turn to the determinat ion of AQ(n). F i r s t  
we rewri te  Eq. (29), with considerat ion of (25), in 
the fo rm 

AQ(p)= 

exp(Pe/2) I F (p) ___p_ p F(p)]. 
= 2mlS lfl.-p~ P + ~ (86) 

The pre image  which cor responds  to the second t e rm 
in the brackets  was cited above. The preimage which 
cor responds  to the f i r s t  terra is obviously a special  
value of the express ion  known for fl = 0. 

Omitting the s imple  but tedious calculations,  we 
obtain 

AQ(n) = mlS[1 --exp(--~n)]erfe~l/2 Pe. (37) 
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Relationships (35) and (37) are convenient formulas 

with which to work. It is curious tn note that thp ~trlm- 
ture of the correction factors Ac(l, n) and AQ(n) is 

entirely analogous to the structure of the correction 

factors which describe the effect of skeletal sorption. 
Considering (31) and (37), for the complete removal 

of the salts over an infinite period of time we find a 

value of 

Q ( ~ )  = mIS(1  - -  1/Pc) ~ mIS/Pe -- mIS, (38) 

which is exact ly  equal to the quantity requi red .  
It was demons t ra ted  in [3] that assuming  the con- 

dition c(0, t) :- 0 (see above), the theory  leads to com-  
plete d is t i l la t ion at n -< 2 (Pc > 2), which is not always 
in ag reemen t  with exper iment .  The overcoming  of 
this contradic t ion n e c e s s a r i l y  involves  cons idera t ion  
both of the skele ta l  sorpt ion of the medium (for act ive  
media)  and the ex i s tence  of c losed pores .  We have 
c a r r i e d  out such an analys is  in va r ious  studies.  

In this paper  we sought to draw attention to the fact  
that for  values of fl not too smal l  even the " c l a s s i ca l "  
theory of convect ive  diffusion of sa l t s  in iner t  and 
homogeneous media  makes  it poss ib le  "to r e t a rd"  the 
dis t i l la t ion p rocess .  

Thus, for  va lues  of fi ~ 10-1-10 -2, Pe ~ 10-102 
and n ~ 5 -10  for Ac(1, n) we have Ae(1,n)  ~ 10-2-10 -4 

(from an init ial  value of c(x, 0)), which is a complete ly  
measu rab l e  quantity denoting the e r r o r  of the theory 
using the condition c(0, t) = 0. 

In conclusion, let  us note that the condition c(0, t) = 
= 0 will  be sa t i s f ied  exact ly  for  any fl if the e x p e r i -  
ment  is se t  up so as to provide  for a sink (at the point 

at which the medium under invest igat ion comes  into 
contact  with the p r e s s u r i z e d  container)  or  at the point 

at which it comes  into contact  with a hose that leads 
to the p r e s s u r i z e d  container) .  The ex is tence  of this 
sink (naturally offset  by the addition of a pure  solvent  
into the container)  makes  it poss ib le  to r ega rd  the 
concentra t ion within the conta iner  as constant,  in view 
of the e jec t ion  to the outside of the sal ts  being diffused 
into the container .  

NOTATION 

c is the solution concentra t ion  in the pore  space  
of the rod; a is the solution concentra t ion  in the p r e s -  
su r i zed  container;  v is the mean veloci ty  of liquid flow 
in pores ;  D is the diffusion coeff ic ient  pe r  unit su r face  
of pore  space;  m is the poros i ty  value; l is  the rod length; 
S is the c ro s s  sect ional  a r ea  of the body; w c is  the Vol- 
ume of the p r e s s u r i z e d  conta iner ;  w r = m/S is the 
volume of pore  space  of the rod; n = v t / / ;  y -= x / / ,  ~ = 

= Wr/W c Pe = v l / D  is the amount of liquid flowing out 
of the rod, exp res sed  in units of Pore  space volume.  
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